Electrical Safety for Kids: Power Cords, Instruction Manuals and Electric Shocks

Wind generated electrical power exists through harnessing wind-power energy with turbines. To fully understand wind generated electrical power, one must understand how wind powered electricity is made; resources needed to utilize wind power; types and sizes of wind turbines; building a wind turbine; potential positive and negative impacts of the technology; where wind powered electricity can be effectively generated; and, offsetting the costs of wind powered electrical technology.https://alectraelectrical.ca/



How Wind Powered Electricity is Made


The technology of wind generated electrical power functions by creating electricity through the use of various styles of wind turbines. Initially, one might ask, "So how do wind turbines make electricity?" Simply said, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan, wind turbines use wind to make electricity. The wind turns the blades, which spin a shaft, which connects to a generator and makes electricity.


Resources Needed to Utilize Wind Power


The primary resource of Wind powered technology is, of course, wind. Wind is very abundant in many parts of the United States and other parts of the world. Wind resources are branded by wind-power density classes, ranging from class 1 (the lowest) to class 7 (the highest). Good wind resources (e.g., class 3 and above, which have an average annual wind speed of at least 13 miles per hour) are found in many areas. Wind speed is a critical of wind resources, because the energy in wind is proportionate to the cube of the wind speed. In other words, a stronger wind means more power.


Wind resource development requires land and may compete with other uses of that land, and those alternative uses may be more highly valued than electricity generation. However, wind turbines can be positioned on land that is also used for grazing or even farming. Wherever a wind farm is to be built, roads are cut to make way for shipping parts. At each wind turbine location, the land is graded and the pad area is leveled. Wind energy also requires the building of wind turbines.


Types and Sizes of Wind Turbines


Modern wind turbines fall into two basic groups: the horizontal-axis variety and the vertical-axis design, like the eggbeater-style Darrieus model, named after its French inventor. Horizontal-axis wind turbines typically either have two or three blades. These three-bladed wind turbines are operated "upwind," with the blades facing into the wind. Darrieus models, or vertical-axis wind turbines, have two vertically oriented blades revolving around a vertical shaft.


In addition to different types, there are many different sizes of wind turbines. Utility-scale turbines range in size from 100 kilowatts to as large as several megawatts. Larger turbines are grouped together into wind farms, which provide bulk power to an electrical grid. Single small turbines, below 100 kilowatts, are used for homes, telecommunications, or water pumping.


Small turbines are sometimes used in connection with diesel generators, batteries, and photovoltaic systems. These systems are called hybrid wind systems and are typically used in remote, off-grid locations, where a connection to the utility grid is not available.


Building a Wind Turbine


The first step in building a wind turbine is setting up the tower where the fiberglass nacelle is installed. The nacelle is a strong, hollow casing that contains the inner workings of the wind turbine. Usually made of fiberglass, the nacelle contains the main drive shaft and the gearbox. Its inner workings also contain blade pitch and yaw controls. The nacelle is assembled and attached onto a base frame at a factory.


The most diverse use of materials and the most experimentation with new materials occur with the blades. Although the most dominant material used for the blades in commercial wind turbines is fiberglass with a hollow core, other materials in use include lightweight woods and aluminum. Wooden blades are solid, but most blades consist of a skin surrounding a core that is either hollow or filled with a lightweight substance such as plastic foam or honeycomb, or balsa wood. Wind turbines also include a utility box, which converts the wind energy into electricity and which is located at the base of the tower. The generator and electronic controls are standard equipment whose main components are steel and copper. Various cables connect the utility box to the nacelle, while others connect the whole turbine to nearby turbines and to a transformer.


Comments

Popular Posts